Announcement

Collapse

Natural Science 301 Guidelines

This is an open forum area for all members for discussions on all issues of science and origins. This area will and does get volatile at times, but we ask that it be kept to a dull roar, and moderators will intervene to keep the peace if necessary. This means obvious trolling and flaming that becomes a problem will be dealt with, and you might find yourself in the doghouse.

As usual, Tweb rules apply. If you haven't read them now would be a good time.

Forum Rules: Here
See more
See less

Exoplanets and other cool stuff in the universe

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Exoplanets and other cool stuff in the universe

    I would like to discuss exoplanets from a theistic perspective(meaning that I don't want a debate on if or how or when God created the universe, that doesn't matter for the purposes of this thread) and ponder on what else is waiting for us to discover. The universe is an awesome place. What is the most interesting fact you have come across? From a theistic perspective, what would be the reason for exoplanets? I don't know why people try to make a dichotomy between God and science. The more I learn about the world/universe, the more God is glorified by the sheer awesomeness of the universe. From the tiniest subatomic particles to the vastness of super galactic clusters, I am amazed by the wonders of the universe. So, we can talk about any cool thing in the universe! No debates please. Other than maybe arguing about which exoplanet is the coolest.
    If it weren't for the Resurrection of Jesus, we'd all be in DEEP TROUBLE!

  • #2

    I'm always still in trouble again

    "You're by far the worst poster on TWeb" and "TWeb's biggest liar" --starlight (the guy who says Stalin was a right-winger)
    "Overall I would rate the withdrawal from Afghanistan as by far the best thing Biden's done" --Starlight
    "Of course, human life begins at fertilization that’s not the argument." --Tassman

    Comment


    • #3


      Though there may be some, I don't think there's any particular reason for exoplanets outside of God's desire to demonstrate his majesty so that we are without excuse in believing in him. Perhaps it's also just the natural byproduct of creating a universe from nothing in the creation of free will beings with intent to worship. It's not like it's a waste of space, time, energy, material or anything else for a limitless, omniscient eternal being.

      Comment


      • #4
        Of course not! And it's really fun to find out new things.
        If it weren't for the Resurrection of Jesus, we'd all be in DEEP TROUBLE!

        Comment


        • #5
          Any weird new exoplants discovered?
          If it weren't for the Resurrection of Jesus, we'd all be in DEEP TROUBLE!

          Comment


          • #6
            Originally posted by Christianbookworm View Post
            Any weird new exoplants discovered?
            Just this week! Well, the discovery was earlier, the announcement of it and paper describing it was this week. All indications are that it's the core of a former gas giant that wandered too close to its star and had the atmosphere driven off.

            Paper's here, but i haven't found a press report i was entirely in love with.

            https://www.nature.com/articles/s41586-020-2421-7
            "Any sufficiently advanced stupidity is indistinguishable from trolling."

            Comment


            • #7
              What about the one with glass shard storms?
              If it weren't for the Resurrection of Jesus, we'd all be in DEEP TROUBLE!

              Comment


              • #8
                I already have thread posted for a while reporting new finds of exoplanets here: http://www.theologyweb.com/campus/sh...s-world!/page5


                Another goldilocks planet found closer an earth like than ever before. . . but there is a problem. There are likely many earth-like planets everywhere, but at what stage are they in their development of their solar system. It depends on how mature the sun is. In our solar system both Venus and Mars were potentially living earth-like planets but no more. Earth-like planets have a life span as the sun matures, and eventually earth will no longer be an earth-like planet.

                Source: https://scitechdaily.com/mirror-image-of-the-earth-and-sun-discovered-3000-light-years-away/




                “Mirror Image” of the Earth and Sun Discovered 3000 Light-Years Away
                TOPICS:AstrobiologyAstronomyAstrophysicsExoplanetM ax Planck Institute
                By MAX PLANCK SOCIETY JUNE 7, 2020

                The star Kepler-160 and its companion KOI-456.04 are more reminiscent of the Sun-Earth system than any previously known exoplanet-star pair.

                Among the more than 4,000 known exoplanets, KOI-456.04 is something special: less than twice the size of Earth, it orbits a Sun-like star. And it does so with a star-planet distance that could permit planetary surface temperatures conducive to life.

                The object was discovered by a team led by the Max Planck Institute for Solar System Research in Göttingen. Its host star, called Kepler-160, actually emits visible light; the central stars of almost all other exoplanets, on the other hand, emit infrared radiation, are smaller and fainter than the Sun and therefore belong to the class of red dwarf stars.

                Typical Exoplanets

                Distant worlds: typical exoplanets orbiting around a Sun-like star are about the size of Neptune and are in close orbit (third picture from above). Almost all of the Earth-sized planets known to have potentially Earth-like surface temperatures are in orbit around red dwarf stars, which do not emit visible light but infrared radiation instead (bottom panel). The Earth is in the right distance from the Sun to have surface temperatures required for the existence of liquid water. The newly discovered planet candidate KOI-456.04 and its star Kepler-160 (second panel from above) have great similarities to Earth and Sun (top panel). Credit: MPS / René Heller

                Space telescopes such as CoRoT, Kepler, and TESS have allowed scientists the discovery of about 4000 extrasolar planets (planets around distant stars) within the past 14 years. Most of these planets are the size of the gas giant planet Neptune, about four times the size of the Earth, and in relatively close orbits around their respective host stars. But scientists have also discovered some exoplanets as small as the Earth that could potentially be rocky. And a handful of these small planets are also at the right distance to their host star to potentially have moderate surface temperatures for the presence of liquid surface water – the essential ingredient for life on Earth.

                “The full picture of habitability, however, involves a look at the qualities of the star too,” explains MPS scientist and lead author of the new study Dr. René Heller. So far, almost all exoplanets less than twice the size of Earth that have a potential for clement surface temperatures are in orbit around a red dwarf.

                Red dwarf stars are known for their extremely long lifetimes. Life on an exoplanet in orbit around an old red dwarf star could potentially have had twice as much time than life on Earth to form and evolve. But the radiation from a red dwarf star is mostly infrared rather than visible light as we know it. Many red dwarfs are also notorious for emitting high-energy flares and for frying their planets, which would later become habitable, with enhanced stellar luminosities as long as these stars are young. Moreover, their faintness requires any habitable planet to be so close to the star that the stellar gravity starts to deform the planet substantially. The resulting tidal heating in the planet could trigger fatal global volcanism. All things combined, the habitability of planets around red dwarf stars is heavily debated in the scientific community.

                In their new research article, the team of scientists from MPS, the Sonneberg Observatory, the University of Göttingen, the University of California in Santa Cruz, and from NASA now reports the discovery of a planet candidate less than twice the size of the Earth and with moderate illumination from a Sun-like star

                At a distance of just over 3000 light-years from the solar system, the star Kepler-160 was located in the field of view of the Kepler primary mission and was continuously observed from 2009 to 2013. Its radius of 1.1 solar radii, its surface temperature of 5200 degrees Celsius (300 degrees less than the Sun), and its very Sun-like stellar luminosity make it an astrophysical portrayal of our own parent star.

                Kepler-160 has been known for about six years to be a host star of two exoplanets, called Kepler-160b and Kepler-160c. Both of these planets are substantially bigger than Earth and in relatively close orbits around their star. Their surface temperatures would certainly make them hotter than a baking oven and everything but hospitable for life as we know it. But tiny variations in the orbital period of planet Kepler-160c gave scientists a signature of a third planet that had yet to be confirmed.

                The team of German and US American scientists now returned to the archival Kepler data of Kepler-160 to search for additional planets around that star and to verify the planetary origin of the perturber of the orbit of Kepler-160c. Heller and his colleagues had previously been successful in finding a total of 18 exoplanets in old Kepler data.

                When searching for exoplanets, scientists usually look for repeating brightness variations of stars. These temporary dimmings, usually just one percent or less of the apparent stellar brightness, can be caused by planets transiting the disks of their host stars as seen from Earth. The key idea of Michael Hippke, co-author of the new work, and Heller was to use a detailed physical model of the stellar brightness variation instead of searching for a step-like jump-to-dimming and then jump-back-to-normal brightness pattern in stellar light curves.

                This box-like approximation used to be the standard search technique for almost two decades. “Our improvement is particularly important in the search for small, Earth-sized planets,” Heller explains. “The planetary signal is so faint that it’s almost entirely hidden in the noise of the data. Our new search mask is slightly better in separating a true exoplanetary signal from the noise in the critical cases,” Heller adds.

                Their new search algorithm was crucial for the discovery of the new transiting planet candidate KOI-456.04. “Our analysis suggests that Kepler-160 is orbited not by two but by a total of four planets,” Heller summarizes the new study. One of the two planets that Heller and his colleagues found is Kepler-160d, the previously suspected planet responsible for the distorted orbit of Kepler-160c. Kepler-160d does not show any transits in the light curve of the star and so it has been confirmed indirectly.

                The other planet, formally a planet candidate, is KOI-456.04, probably a transiting planet with a radius of 1.9 Earth radii and an orbital period of 378 days. Given its Sun-like host star, the very Earth-like orbital period results in a very Earth-like insolation from the star – both in terms of the amount of the light received and in terms of the light color. Light from Kepler-160 is visible light very much like sunlight. All things considered, KOI-456.04 sits in a region of the stellar habitable zone – the distance range around a star admitting liquid surface water on an Earth-like planet – that is comparable to the Earth’s position around the Sun.

                “KOI-456.01 is relatively large compared to many other planets that are considered potentially habitable. But it’s the combination of this less-than-double the size of the Earth planet and its solar type host star that make it so special and familiar,” Heller clarifies. As a consequence, the surface conditions on KOI-456.04 could be similar to those known on Earth, provided its atmosphere is not too massive and non-Earth-like. The amount of light received from its host star is about 93 percent of the sunlight received on Earth. If KOI-456.04 has a mostly inert atmosphere with a mild Earth-like greenhouse effect, then its surface temperature would be +5 degrees Celsius on average, which is about ten degrees lower than the Earth’s mean global temperature.

                It cannot currently be ruled out completely that KOI-456.04 is in fact a statistical fluke or a systematic measurement error instead of a genuine planet. The team estimates the chances of a planetary nature of KOI-456.04 to be about 85% pro planet. Obtaining a formal planetary status requires 99%. While some of the Earth’s most powerful ground-based telescopes might be able to validate this candidate with observations of one of its upcoming transits, there is also a good chance that the PLATO space mission of ESA will be capable of a confirmation. PLATO is scheduled for launch in 2026 and one of its major science goals is the discovery of Earth-sized planets around Sun-like stars. The MPS is currently building the PLATO Data Center and deeply involved in the PLATO mission. If PLATO will be oriented in such a way as to re-observe the field of view of the Kepler primary mission, then KOI-456.04 will have a chance of being confirmed and studied in even more detail with PLATO.

                Reference: “Transit least-squares survey: III. A 1.9 R⊕ transit candidate in the habitable zone of Kepler-160 and a nontransiting planet characterized by transit-timing variations” by René Heller, Michael Hippke, Jantje Freudenthal, Kai Rodenbeck, Natalie M. Batalha and Steve Bryson, 4 June 2020, Astronomy & Astrophysics.
                DOI: 10.1051/0004-6361/201936929.

                © Copyright Original Source

                Glendower: I can call spirits from the vasty deep.
                Hotspur: Why, so can I, or so can any man;
                But will they come when you do call for them? Shakespeare’s Henry IV, Part 1, Act III:

                go with the flow the river knows . . .

                Frank

                I do not know, therefore everything is in pencil.

                Comment


                • #9
                  This is an update of planets around a nearby star. I believe it was previously determined that there was a earth-like planet around a red dwarf, but now it was determined that there are large two earth-like planets.

                  Source: https://scitechdaily.com/international-reddots-team-has-detected-a-system-of-super-earth-planets-orbiting-nearby-red-dwarf-star/



                  International “RedDots” Team Has Detected a System of Super-Earth Planets Orbiting Nearby Red Dwarf Star

                  An international team of researchers has found multiple planet systems orbiting red dwarf star Gliese 887.

                  The international “RedDots” team – joined by Australian astronomers at UNSW Sydney, Macquarie University and University of Southern Queensland for this work – has detected a system of super-Earth planets orbiting the brightest red dwarf star in the sky, Gliese 887. The results were published in the journal Science on June 25, 2020.

                  Super-Earths are planets more massive than the Earth, but substantially less massive than our local ice giants, Uranus and Neptune. The newly discovered super-Earths could be rocky worlds, and lie close to the “habitable zone” of this red dwarf star – i.e. the zone where water could exist in liquid form on a planetary surface.

                  “The exciting thing about these planets are that they orbit a star so close to the Sun, and so very bright,” said UNSW-based planet hunter Prof Chris Tinney, who is a co-author on the paper. “We now know of thousands planets of Super-Earth-mass, or smaller. But most of those planets orbit distant and faint stars. Planets orbiting nearby stars are key for searches with future telescopes for both exoplanetary atmospheres, and eventually evidence for life.”

                  The team of astronomers monitored the red dwarf, using the HARPS spectrograph at the European Southern Observatory in Chile, and then combined that data with data from the Anglo-Australian Planet Search (using the 3.9m Anglo-Australian Telescope near Coonabarabran), the Planet finder Spectrograph (on Cerro Las Campanas in Chile) and the HIRES instrument on the Keck telescopes on Maunakea, Hawaii.

                  Using a technique known as “Doppler wobble,” they measured the tiny back and forth motion of Gliese 887 due to the gravitational pull of its planets. The regular signals correspond to orbital periods of 9.3 and 21.8 days, which indicates the presence of two super-Earths – known as Gliese 887b and Gliese 887c. The team estimates the surface temperature of the outer planet (Gliese 887c) to be around 70oC.

                  Gliese 887 is around 11 light years away, making it one of the closest stars to the Sun. It is much dimmer than, and about half the size of, our Sun. This means its habitable zone is closer to Gliese 887, than Sun’s habitable zone (in which the Earth orbits).

                  The team discovered a few more interesting facts about Gliese 887 that turn out to be good news for both the newly discovered planets, and for astronomers studying them.

                  “The red dwarf has little in the way of starspots of other magnetic activity,” said Prof Brad Carter of the University of Southern Queensland. “If Gliese 887 were as active as many other red dwarf stars its stellar winds and activity would likely significantly erode any planetary atmospheres. So given the star is relatively inactive the newly discovered planets could be expected to retain their atmospheres”.

                  “The star Gliese 887 is also very stable,” said Prof Rob Wittenmyer, also from University of Southern Queensland. “The brightness of Gliese 887 is really very constant. This will make it much easier to detect the atmospheres of these super-Earths using coming space-based facilities like the James Webb Space Telescope – the successor to the Hubble Telescope, which is due to be launched soon.”

                  “In the era of space-based exoplanet-hunting telescopes like NASA’s Kepler and TESS, this result shows that astronomy from the ground continues to play a crucial role in our understanding of planets in our local neighborhood,” said Dr Simon O’Toole, a co-author on the study from Macquarie University.

                  Dr. Sandra Jeffers, from the University of Göttingen and lead author of the study, said: “These planets will provide the best possibilities for more detailed studies, including the search for life outside our Solar System.”

                  © Copyright Original Source

                  Glendower: I can call spirits from the vasty deep.
                  Hotspur: Why, so can I, or so can any man;
                  But will they come when you do call for them? Shakespeare’s Henry IV, Part 1, Act III:

                  go with the flow the river knows . . .

                  Frank

                  I do not know, therefore everything is in pencil.

                  Comment


                  • #10
                    From a theistic perspective, what would be the reason for exoplanets?
                    I think a God would be motivated by creativity. There's so much detail in our universe that, if it's created, would indicate a lot of thought being put into how things work.

                    I don't know why people try to make a dichotomy between God and science.
                    I think it has to do something with how our brains are wired. There's a good Ted talk about it.
                    "Concentrate on what you have to do. Fix your eyes on it. Remind yourself that your task is to be a good human being; remind yourself what nature demands of people. Then do it, without hesitation, and speak the truth as you see it. But with kindness. With humility. Without hypocrisy."
                    -Marcus Aurelius

                    Comment


                    • #11
                      Originally posted by Christianbookworm
                      From a theistic perspective, what would be the reason for exoplanets?
                      I don believe God deals with 'reasons' concerning the nature of our physical existence. Simply in Creation our physical existence reflects the attributes of God, and not our theistic perspective.

                      I don't know why people try to make a dichotomy between God and science.
                      People see dichotomies between science and God, because their point of reference is ancient scripture that reflects the world view of the authors at the time they were written and not science.

                      The beginnings of the contemporary science of our universe that described a universe of many solar systems and planets did exist 2000+ years ago in the writings of Lucretius in the 2nd century that reflects the view of some Greek philosophers..
                      Last edited by shunyadragon; 07-04-2020, 08:25 AM.
                      Glendower: I can call spirits from the vasty deep.
                      Hotspur: Why, so can I, or so can any man;
                      But will they come when you do call for them? Shakespeare’s Henry IV, Part 1, Act III:

                      go with the flow the river knows . . .

                      Frank

                      I do not know, therefore everything is in pencil.

                      Comment


                      • #12
                        Originally posted by TheLurch View Post
                        Just this week! Well, the discovery was earlier, the announcement of it and paper describing it was this week. All indications are that it's the core of a former gas giant that wandered too close to its star and had the atmosphere driven off.

                        Paper's here, but i haven't found a press report i was entirely in love with.

                        https://www.nature.com/articles/s41586-020-2421-7
                        Thanks for the reference!

                        The following is an interesting layman's version: https://www.sciencealert.com/this-we...dead-gas-giant
                        Last edited by shunyadragon; 07-04-2020, 04:18 PM.
                        Glendower: I can call spirits from the vasty deep.
                        Hotspur: Why, so can I, or so can any man;
                        But will they come when you do call for them? Shakespeare’s Henry IV, Part 1, Act III:

                        go with the flow the river knows . . .

                        Frank

                        I do not know, therefore everything is in pencil.

                        Comment


                        • #13
                          Source: https://www.space.com/multiplanet-system-sun-like-star-first-photo.html



                          Multiplanet system around sunlike star photographed for 1st time ever
                          By Mike Wall 3 hours ago

                          The two newly imaged planets are huge — 14 and 6 times more massive than Jupiter.

                          For the first time ever, astronomers have directly imaged multiple planets orbiting a sunlike star.

                          The European Southern Observatory's Very Large Telescope (VLT) in Chile photographed two giant planets circling TYC 8998-760-1, a very young analogue of our own sun that lies about 300 light-years from Earth, a new study reports.

                          "This discovery is a snapshot of an environment that is very similar to our solar system, but at a much earlier stage of its evolution," study lead author Alexander Bohn, a doctoral student at Leiden University in the Netherlands, said in a statement.

                          Before this historic cosmic portrait, only two multiplanet systems had ever been directly imaged, and neither of them features a sunlike star, study team members said. And snapping a photo of even a single exoplanet remains a rare achievement.

                          "Even though astronomers have indirectly detected thousands of planets in our galaxy, only a tiny fraction of these exoplanets have been directly imaged," study co-author Matthew Kenworthy, an associate professor at Leiden University, said in the same statement.

                          Bohn, Kenworthy and their colleagues studied the 17-million-year-old star TYC 8998-760-1 with the VLT's Spectro-Polarimetric High-contrast Exoplanet Research instrument, or SPHERE for short. SPHERE uses a device called a coronagraph to block a star's blinding light, allowing astronomers to see and study orbiting planets that would otherwise be lost in the glare.

                          The newly reported SPHERE imagery revealed two planets in the system, TYC 8998-760-1b and TYC 8998-760-1c. Astronomers already knew about TYC 8998-760-1b — a team led by Bohn announced its discovery late last year — but TYC 8998-760-1c is a newfound world.

                          The two planets are huge and farflung. TYC 8998-760-1b is about 14 times more massive than Jupiter and orbits at an average distance of 160 astronomical units (AU), and TYC 8998-760-1c is six times heftier than Jupiter and lies about 320 AU from the host star. (One AU is the average Earth-sun distance — about 93 million miles, or 150 million kilometers. For comparison: Jupiter and Saturn orbit our sun at just 5 AU and 10 AU, respectively.)

                          It's unclear whether the two worlds in TYC 8998-760-1 formed at their present locations or were pushed out there somehow. Further observations, including those made by huge future observatories such as the European Extremely Large Telescope (ELT), could help to solve that mystery, study team members said.

                          Other questions remain about the TYC 8998-760-1 system as well. For example, do the two gas giants have company? Might several rocky planets circle relatively close to the star, as they do in our solar system?

                          "The possibility that future instruments, such as those available on the ELT, will be able to detect even lower-mass planets around this star marks an important milestone in understanding multiplanet systems, with potential implications for the history of our own solar system," Bohn said.

                          The new study was published online today (July 22) in The Astrophysical Journal Letters.

                          © Copyright Original Source



                          Neat illustrations.
                          Last edited by shunyadragon; 07-22-2020, 11:57 AM.
                          Glendower: I can call spirits from the vasty deep.
                          Hotspur: Why, so can I, or so can any man;
                          But will they come when you do call for them? Shakespeare’s Henry IV, Part 1, Act III:

                          go with the flow the river knows . . .

                          Frank

                          I do not know, therefore everything is in pencil.

                          Comment


                          • #14
                            Many with possibly life earth-like planets discovered

                            Source: https://news.yahoo.com/25-years-since-found-first-060015649.html



                            It's Been 25 Years Since We Found the First Exoplanet. Now We Know of Thousands—and Some Could Harbor Life

                            Jeffrey Kluger
                            ,


                            ,
                            TimeOctober 6, 2020Exoplanets
                            An artist's rendition of 51 Pegasi b. Credit - NASA

                            Nobody gives out awards for Worst Planet in the Galaxy—and it would be a dubious honor at best. Somewhere out there may be other garden planets like Earth. Somewhere too may be near-miss worlds like Mars. And somewhere out there are planets like 51 Pegasi b which, if it didn’t win the Worst Planet nod, would surely make it to the medal round.

                            Located about 50 light years from Earth, 51 Pegasi b is a gas giant like Jupiter, with a mass about 150 times that of Earth, circling its host star at a distance of just 7 million km (4.3 million mi.). Orbiting so close, 51 Pegasi b has a surface temperature estimated at 1,000º C (1,800º F). It’s also tidally locked, meaning one side is always facing that solar oven.

                            But 51 Pegasi b is more than just an overheated gas ball. In fact, it’s one of the most significant planets ever discovered—so important that, in 2019, the astronomers who found it were awarded the Nobel Prize in Physics. Why? Because whatever its shortcomings, it was the first planet ever discovered outside our own solar system orbiting a main sequence star like the sun. With that, the field of exoplanets was born.

                            51 Pegasi b was discovered on October 6, 1995, and 25 years later, the exoplanet count has grown tremendously. By the most recent tally, there are 4,354 known exoplanets, including 712 multi-planet systems, for a total of 3,218 solar systems beyond our own. Virtually every one of the hundreds of trillions of stars in the universe is now believed to harbor at least one world—and many are home to whole litters. The Earth, which once sat at the center of humanity’s map of the cosmos, is now known to be an impossibly tiny part of an impossibly vast planetary census.

                            Astronomers didn’t spot 55 Pegasi b directly—it’s no more possible to visualize a planet in the glare of its parent star from a distance of 50 light years than it is to see a moth fluttering near a streetlight from half a dozen blocks away. Instead, the investigators used the radial velocity method, which involves looking at the slight gravitational wobble a planet causes in its star as it makes its orbit. It’s a nifty method for discovering planets, but it’s slow, as only one star can be observed at a time.

                            © Copyright Original Source

                            Glendower: I can call spirits from the vasty deep.
                            Hotspur: Why, so can I, or so can any man;
                            But will they come when you do call for them? Shakespeare’s Henry IV, Part 1, Act III:

                            go with the flow the river knows . . .

                            Frank

                            I do not know, therefore everything is in pencil.

                            Comment


                            • #15
                              Source: https://phys.org/news/2020-10-habitable-zone-earth-sized-planet-exoplanet-survey.html



                              The first habitable-zone, Earth-sized planet discovered with exoplanet survey spacecraft


                              by Harvard-Smithsonian Center for Astrophysics
                              A schematic of the planets around the nearby M dwarf star TOI-700, discovered by TESS. The third (the farthest planet from the star), TOI-700d, lies within the star's habitable zone (shown in green). Using the IRAC camera on Spitzer, the team refined the planet's mass as 2.1 Earth-masses and 1.14 Earth-radii. (The scale shows 0.2 astronomical units; AU being the average Earth-Sun distance.) Credit: Rodriguez et al 2020
                              TESS, the Transiting Exoplanet Survey Satellite, was launched in 2018 with the goal of discovering small planets around the Sun's nearest neighbors, stars bright enough to allow for follow-up characterizations of their planets' masses and atmospheres. TESS has so far discovered seventeen small planets around eleven nearby stars that are M dwarfs—stars that are smaller than the Sun (less than about 60% of the Sun's mass) and cooler (surface temperatures less than about 3900 kelvin). In a series of three papers that appeared together this month, astronomers report that one of these planets, TOI-700d, is Earth-sized and also located in its star's habitable zone; they also discuss its possible climate.

                              Center for Astrophysics astronomers Joseph Rodriguez, Laura Kreidberg, Karen Collins, Samuel Quinn, Dave Latham, Ryan Cloutier, Jennifer Winters, Jason Eastman, and David Charbonneau were on the teams that studied TOI-700d, one of three small planets orbiting one M dwarf star (its mass is 0.415 solar masses) located one hundred and two light-years from Earth. The TESS data analysis found the tentative sizes of the planets as being approximately Earth-sized, 1.04, 2.65 and 1.14 Earth-radii, respectively, and their orbital periods as 9.98, 16.05, and 37.42 days, respectively. In our solar system, Mercury orbits the Sun in about 88 days; it is so close to the Sun that its temperature can reach over 400 Celsius. But because this M-dwarf star is comparatively cool the orbit of its third planet, even though much closer to the star than Mercury is to the Sun, places it in the habitable zone – the region within which the temperatures allow surface water (if any) to remain liquid when there is also an atmosphere. That makes this Earth-sized planet TOI-700d particularly interesting as a potential host for life.

                              The TESS detections were exciting but uncertain: the signals were faint and a small possibility remained that the TOI-700d detection was spurious. Because of the potential importance of finding a nearby Earth-sized planet in a habitable zone, the TESS scientists turned to the IRAC camera on the Spitzer Space Observatory for confirmation. Before being turned off by NASA in February 2020, the IRAC camera was by far the most sensitive near infrared camera in space. The TESS team observed TOI-700 with IRAC in October of 2019 and January of 2020, acquiring clear detections of the planets with about twice the signal-to-noise of TESS, enough to give a 61% improvement in the planet's orbit and to significantly refine our knowledge of its other characteristics, refining the radius as above and finding the mass to be 2.1 Earth-masses. The results, especially when compared with other planets' properties, suggest that this planet may be rocky and likely to be "tidally locked" with one side of the planet always facing the star.

                              If there were liquid water on the surface of TOI-700d, the astronomers argue, there would also be water-bearing clouds in the atmosphere, and the team uses climate system models to estimate its possible properties and what more sensitive measurements might find. They conclude, however, that pending space missions, including JWST, will probably lack the sensitivity to detect atmospheric features by a factor of ten or more. Their detailed climate studies will nevertheless help astronomers constrain the kinds of telescopes and instruments that will be needed to investigate this exciting new neighbor.

                              © Copyright Original Source



                              Glendower: I can call spirits from the vasty deep.
                              Hotspur: Why, so can I, or so can any man;
                              But will they come when you do call for them? Shakespeare’s Henry IV, Part 1, Act III:

                              go with the flow the river knows . . .

                              Frank

                              I do not know, therefore everything is in pencil.

                              Comment

                              Related Threads

                              Collapse

                              Topics Statistics Last Post
                              Started by Hypatia_Alexandria, 03-18-2024, 12:15 PM
                              48 responses
                              135 views
                              0 likes
                              Last Post Sparko
                              by Sparko
                               
                              Started by Sparko, 03-07-2024, 08:52 AM
                              16 responses
                              74 views
                              0 likes
                              Last Post shunyadragon  
                              Started by rogue06, 02-28-2024, 11:06 AM
                              6 responses
                              47 views
                              0 likes
                              Last Post shunyadragon  
                              Working...
                              X